Showing posts with label telomere. Show all posts
Showing posts with label telomere. Show all posts

25 June 2011

How Diet and Lifestyle Influence Telomere Length

Telomere length has a proportional and linear relationship to omega-3 fatty acids.
With all the attention surrounding telomere length as a biomarker of biological aging, it’s worth pointing out that one nutrient may make a lot of difference: fish-derived omega-3 fatty acids.

The higher the blood levels of fish-derived omega-3 acids in patients with coronary heart disease, the longer the telomeres. This was what was found by researchers recently from University of California, San Francisco.

Omega-3

The study (Farzaneh et al. 2010), published in the January issue of JAMA last year, showed that leukocyte telomere length (LTL) was positively associated with higher blood levels of omega-3 fatty acids (see Figure).

“Omega-3 fatty acids may protect against cellular aging in patients with coronary heart disease,” the authors wrote.

This longitudinal study followed 608 patients with stable coronary artery disease for five years. LTL was measured at baseline and again five years later. The baseline levels of omega-3 fatty acids were then used to compare the rates of telomere attrition over the five-year period.

“Association of omega-3 fatty acids with decelerated telomere attrition may lie in the paradigm of oxidative stress, a powerful driver of telomere shortening,” the authors wrote.

Omega-3 fatty acids have been shown to increase levels of catalase and superoxide dismutase (enzymes that serve important antioxidant roles in the body). The researchers hypothesize that omega-3s may even increase the activity of existing telomerase, the enzyme responsible for the addition of base pairs to DNA during replication.

11 June 2011

Depression and telomeres

Reference: Wolkowitz et al. 2011 March.
People who suffer from major depression have a higher risk of age-related illness and earlier mortality (1 &2). Researchers from University of California, San Francisco (UCSF), investigated (1) telomere length in depressed individuals versus matched controls and assessed other biological factors associated with telomere shortening.

Led by Nobel laureate Elizabeth Blackburn, Ph.D., the team of researchers published their findings in the March issue of PLos One. Their hypothesis was that not all depressed subjects would show shortened telomeres equally because of a large variance in depressive episodes over a lifetime. However, they predicted that those who suffered from depression for long durations would have shorter telomeres due to longer exposure to oxidative stress and inflammation induced by psychological stress.

The scientists recruited 18 subjects diagnosed with Major Depressive Disorder (MDD), excluding those with psychosis or bipolar histories, as well as those with Post-Traumatic Stress Disorder to eliminate confounding variables due to interferences with stress hormone regulation. Results from depressed individuals were compared to those of the matched control group.

22 April 2011

Health at Telomere's Length

A health checkup could soon incorporate a telomere measurement to estimate a person's biological age as a superior indicator of age-related degeneration and vulnerability to disease than chronological age, reports Mitch Leslie in an article entitled, "Are Telomere Tests Ready for Prime Time," published in Science magazine today.

The article reports that two companies have announced plans to start performing tests for the general public this year: Life Length of Madrid has already began offering the tests to patients and Telome Health, of Menlo Park, Calif., will begin to make them available to clinicians sometime later this year.

Already, medical researchers have employed telomere measurement for predicting illness and tailoring treatments to save lives, yet the article reports that skepticism exists about how effective telomere tests will be in predicting disease or determining lifespan in a clinical setting.

"By curtailing self-renewal, worn-down telomeres might promote the senescence of our bodies—although how much has been controversial," writes Leslie.

On one side of the issue is Telome Health co-founder Elizabeth H. Blackburn, a cell biologist at University of California, San Francisco (UCSF), who is quoted as saying "Telomeres are an integrative indicator of health."

Carol W. Greider, a former graduate student in Blackburn's lab and a molecular biologist at Johns Hopkins University School of Medicine in Baltimore, Maryland, disagrees saying, “Do I think it’s useful to have a bunch of companies offering to measure telomere length so people can find out how old they are? No.”

In 2009, Blackburn and Greider were awarded the Nobel Prize in Physiology or Medicine, along with Jack W. Szostack, for the discovery of how chromosomes are protected by telomeres and the enzyme telomerase.

Telomeres are comprised of non-coding, repetitive sequences of coiled DNA that serve as protective caps at the end of chromosomes, preserving their integrity and keeping them from fraying and sticking to each other.

Shortened telomeres are linked with a greater chance of developing cardiovascular disease, diabetes, Alzheimer's disease, and other chronic diseases. In the last few years, studies have also showed that the rate of telomere shortening can be strongly affected by diet and lifestyle.

According to the article, among factors that affect telomeres harshly are smoking, drinking heavily, obesity, and chronic psychological stress. On the other hand, meditation, exercise, a healthy diet, and higher blood levels in omega-3 fatty acids offer a buffer to help maintain longer telomeres.

The enzyme telomerase, which plays a role in helping to maintain telomere length, is a recognized target of pharmaceutical-nutraceutical companies for producing possible therapies in the future.